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Abstract

The structure of the R phase of the alloy Ti50Ni48.7Co1.3

was determined by the crystallogeometric analysis of
martensitic transformations in titanium nickelide. This
analysis is based on the concept of cooperative thermal
vibrations of the (110)-like planes in the b.c.c. and B2
structures and their freezing (transformation to static
displacements) at the point of the phase transition. The
space group of the R phase is trigonal P31m with a
hexagonal Bravais lattice. The validity of the R-phase
structure determination is con®rmed by an X-ray
diffraction pattern that was obtained at room tempera-
ture using Cu K� radiation. The Rietveld procedure was
used to compare the calculated and experimental X-ray
diffraction patterns. The proposed structural model of
the R phase agrees satisfactorily with the experimental
data.

1. Introduction

Determination of the crystal structures of the new
phases arising from structural phase transitions often
appears to be a complicated problem. On the one hand,
such a problem demands experimental diffraction data
that can be obtained by X-ray or neutron methods. On
the other hand, it is necessary to have a model of the
structure, which should be created with the help of any
available physical or conceptual information. The ®nal
quantitative re®nement of the structure is achieved by
the use of procedures (such as Rietveld re®nement) to
®t the theoretical intensity pro®le to the experimental
one. The absence (or inadequacy) of the a priori justi-
®cation for an initial physical model of the structure is a
drawback of many diffraction studies.

The situation with studies of the crystal structures of
NiTi phases is an example. At high temperatures, an
NiTi alloy having a nearly equiatomic composition
possesses a crystal structure of the B2 type. At low
temperatures, three martensitic phases can appear,
depending on the deviation from the equiatomic stoi-
chiometric composition, the concentration and type of
dopants, the treatment of samples, and so on. They are
the orthorhombic B19 phase, the trigonal R phase and
the monoclinic phase. The structure of the monoclinic

phase is usually considered to be a distorted B19
structure and is called B190 (Buhrer et al., 1985).

Although investigations of NiTi martensitic phases
have been described in many papers, the structure of the
B19 phase is so far the only reliably determined struc-
ture for NiTi. The situation turns out to be more intri-
cate for the case of the R phase, which was considered
for a long time to have a rhombohedral unit cell. That
was a reason for calling this phase the `R phase'. Now it
has been determined that the space group for the R
phase is trigonal with a primitive hexagonal Bravais
lattice. There is, however, disagreement in the literature
over the choice of the actual space group. Goo &
Sinclair (1985) indicated that the space group was P3Å1m.
Hara et al. (1995) applied the Rietveld procedure for the
full-pro®le analysis of the diffraction pattern of a
Ti±50.23 at.% Ni alloy containing the R phase. The
space groups examined were P311, P3Å11, P31m and
P3Å1m. In their work, these authors have chosen space
group P311, in spite of the common knowledge that the
presence or absence of inversion symmetry cannot be
determined by diffraction methods alone. The coordi-
nates of the Ti and Ni atoms in the unit cell were also
determinated by the Rietveld method. The work by
Ohba et al. (1992), where the so-called �02 phase in an
Au±49.5 at.% Cd alloy which is similar to the R phase in
NiTi is considered, may be mentioned here. The authors
used the full-matrix least-squares method to determine
that the �02 phase had the space group P311 and obtained
lattice parameters and atomic coordinates in the unit
cell. None of these works contains any theoretical
concepts or calculations that could clarify why the B2
lattice transforms into this trigonal structure under a
martensitic phase transition.

The present work is based on the crystallogeometric
theory of martensitic transformations in titanium nick-
elide developed earlier (Naish et al., 1995, 1997). This
theory allows an independent (of experiment) analysis
of the structures of possible martensitic phases with a
theoretical determination of their space groups, lattice
parameters and the atomic coordinates. To test the
theoretical results, we obtained X-ray powder diffrac-
tion patterns for an alloy with the composition
Ti50Ni48.7Co1.3 in the R phase. All the structure par-
ameters calculated by the theory were re®ned by a
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comparison of theoretical and measured peak positions,
as well as relative intensities for X-ray re¯ections.
Finally, we have compared our results with the experi-
mental data of Hara et al. (1995) and of Shapiro (1981),
and have obtained satisfactory agreement.

2. The cooperative thermal vibrations concept

Crystallogeometrical analysis of martensitic transfor-
mations in titanium nickelide and of structural phase
transitions in many other crystals constructed using the
concept of cooperative thermal vibrations and their
transformation into static displacements has been
developed in our previous papers. The results of these
studies were reviewed by Kassan-Ogly et al. (1994).

The concept of cooperative thermal vibrations is
based on the hypothesis that there exist atomic chains
or atomic planes (one- or two-dimensional objects) in
which the atomic vibrations are correlated, so that
coherent structural relationships within the objects are
retained. The existence of such vibrations is easily
con®rmed by the pictures of sharp anisotropic thermal
diffuse scattering of X-rays and electrons in the so-
called mono-Laue scheme (®xed beam±®xed crystal). A
detailed discussion of such experiments is contained in
the review by Kassan-Ogly et al. (1994). In the majority
of cases, the crystallogeometrical analysis of a structure
furnishes a determination of the objects in the structure
a priori. The B2 structure, which is found in NiTi at high
temperatures, is an example. The coherent objects are
the (110) atomic planes, which are only capable of
moving within their own planes along the [11Å0] direc-
tions. Mono-Laue diffraction patterns (Naish et al.,
1995) con®rm this conclusion.

At the phase-transition point, the vibrations of
extended coherent objects become frozen, transforming
into static displacements. The response of a distorted
crystal to these displacements is densi®cation (or
contraction), which can be regarded as a uniform strain.
As a result, the parent structure can be transformed,
leading to a structural phase transition of a cooperative
(martensite) type, because the displacements and
vibrations of atoms are correlated.

The initial high-symmetry phase possesses several
crystallographically equivalent families of extended
objects so that the structure of the new phase depends
on the number of object families participating simulta-
neously in the process of freezing. It is convenient to
describe the set of freezing families in terms of the
multicomponent order parameter

� �PCi�i; �1�
where each component �i corresponds to one family, and
the set of nonzero mixing coef®cients {Ci} determines
the variant of simultaneous freezing of cooperative
vibrations. From the physical viewpoint, it is reasonable
to consider only the high-symmetry variants of mixing in

the space of the order parameter. Other variants have
unfavorable energies.

3. Con®gurations of static displacements within one
family

Except for variants of mixing, the structure of the
martensitic phase depends on con®gurations of static
displacements of the extended objects within each
family that is present after freezing. In our case, these
are the con®gurations of the displacements of parallel
and equidistant (110)-type planes along themselves. It is
convenient to describe these con®gurations by a wave-
vector of the con®guration, q. Here we are dealing with
an essentially one-dimensional sequence of parallel
planes numbered 0, 1, 2, . . . , n, . . . with interplanar
spacing d. Thus, we may use a one-dimensional wave-
vector q.

Let us assume that the con®guration of plane
displacements is periodic with a period t. The wave-
vector q speci®es the value of t but it says nothing about
the mutual displacements within one period. In what
follows, all distances in real space are stated as fractions
of d, while those in reciprocal space are stated as frac-
tions of 2�=d. The displacement �n of plane n can be
obtained from the displacement �0 of the initial plane
by the equation

�n � �0 exp�2�iqn�: �2�
For q � 1=2, where the period is t � 2, we have
�0 � �2 � �4 � . . .. For q � 1=3, the period is t � 3,
and so on.

It makes no sense to consider the con®gurations with
a very small q (large period t), so we (Naish et al., 1997)
have only analyzed the cases with periods t � 1, 2, 3 and
4, corresponding to q � 0, 1=2, 1=3 and 1=4. The theo-
retical basis for the choice of con®gurations of the
families of static plane displacements is a set of the
eigenstates of the one-dimensional Ising Hamiltonian.

For the Ising model, we use the Ising operator
�n � �1, which can be assigned either to the plane
numbered n or to the space between the (n ÿ 1)th and
nth planes. In their turn, values � � �1 and ÿ1 express
either the absolute plane displacement or the displace-
ment with respect to the adjacent planes (the relative
displacements). The Ising Hamiltonian can be written in
the nearest-neighbor approximation as

H � ÿV
P
�n�n�1; �3�

or the next-nearest-neighbor approximation

H � ÿV
P
�n�n�1 ÿ V 0

P
�n�n�2: �4�

Approximation (3) is suf®cient to describe the con®g-
urations of the static displacements with periods t � 0
and 1. In this case, the ground eigenstates are the
following Ising con®gurations:
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V > 0 : �1 � �2 � �3 � . . . `ferromagnetic';

t � 1; q � 0;

V < 0 : �1 � ÿ�2 � �3 � ÿ�4 `antiferromagnetic';

t � 2; q � 1=2: �5�
The `ferromagnetic' Ising con®guration has no physical
sense for the description of the absolute displacements
because this case describes movement of the crystal as a
whole. For relative displacements, the `ferromagnetic'
Ising con®guration corresponds to the con®guration of
static displacements represented in Fig. 1(a). This
con®guration is called the `shear mechanism' (Naish et
al., 1995, 1997; Kassan-Ogly et al., 1994) and it means
that the displacement of each plane with respect to the
previous one leads to the accumulation of the total
macroscopic shear.

The `antiferromagnetic' con®guration, in terms of
both absolute and relative displacements, describes the
situation in which the plane displacements are
compensated at each successive interplanar spacing.
This con®guration is represented in Fig. 1(b) and is
called `the compensation mechanism' (Naish et al., 1995,
1997; Kassan-Ogly et al., 1994).

To describe the more complicated con®gurations of
static displacements with periods t � 3 or 4, it is neces-
sary to analyze the Hamiltonian (4). Its eigenstates
depend on the signs of parameters V and V0 and the
relation s � jV=V 0j. This problem was considered in
detail in the work of Kassan-Ogly et al. (1989) and of
Grebennikov & Naish (1991).

For V0 > 0 (noncompeting interactions V and V0),
Hamiltonian (4), as well as Hamiltonian (3), has eigen-
states (5). For V0 < 0 (competing interactions V and V0),
all results depend on the value of s. For s> 1=4, in
addition to `ferromagnetic' and `antiferromagnetic'
con®gurations, there is also an incommensurate eigen-
state of Hamiltonian (4) that for s close to 1=2 (V < 0,
V0 < 0) corresponds to the Ising con®guration with the
wavevector q close to 1=3. This con®guration cannot be
the ground state and it transforms inevitably to the
`antiferromagnetic' ground state (for s< 1=2) or to the
ground state with q � 1=4 (for s> 1=2) upon the
lowering of temperature. Nevertheless, the temperature
range of existence of the con®guration with q � 1=3 is
quite wide, so that this incommensurate phase may
appear in real crystals. Thus, the set of con®gurations
considered for the static displacements is extended by
the con®gurations represented in Figs. 1(c) and (d) with
t � 3 (q � 1=3) and t � 4 (q � 1=4), respectively.

In previous work (Naish et al., 1997), we have
considered in detail the occurrence of particular
combinations of freezing con®gurations and mixing
variants in real crystals with parent b.c.c. and B2 struc-
tures. In the present work, we will address the con®g-
uration in Fig. 1(c) with mixing variant (0C0C0C), which
corresponds to the freezing of three plane families of
types {1Å10}, {01Å1}and {101Å }. These planes intersect on
[111]-type lines. We show below that this case of the
martensitic phase structure is the structure of the R
phase of titanium nickelide.

4. The R-phase model

A crystal structure responds to the freezing of coop-
erative vibrations of coherent object families by densi-
®cation, called `contraction'. In b.c.c. and B2 structures,
contraction within one family of the planes of (110) type
may usefully be subdivided into intra- and interobject
contraction. The intraobject contraction has two par-
ameters, k|| and kz, as is shown in Fig. 2(a). Interobject
contraction k? `densi®es' different planes of the given
family relative to one another (Fig. 2b). Both contrac-
tion types appear to be possible due to the mutual shifts
of the planes of the family and, as a result, planes lose
their interlocking relation with one another. The speci®c
feature of the con®gurations of the static displacements
of the coherent objects with period t � 3 is such that two
adjacent planes with equal displacements prevent each
other from interacting. Thus, contraction is impossible,
and we must introduce an additional displacement p in
the direction perpendicular to the planes of a chosen
family. This displacement is outlined in Fig. 2(c), as well
as the in-plane static displacements �. The plane passing
through the zeroth atom is assumed to be immobile, the
next two planes are both shifted by 2�, the third plane is
immobile again, and so on.

Fig. 1. Types of con®guration of the relative displacements of (110)-
type planes. (a) Wave vector q = 0 (shear mechanism); (b) q = 1/2
(compensation mechanism); (c) q = 1/3; (d) q = 1/4.
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The contraction-related displacements corresponding
to a uniform strain can only change the lengths of the
translations of the parent phase and rotate them. In
contrast, the in-plane displacements 2� can eliminate
some translations. The additional displacements p are
characteristic only of the sheared planes, so they have no
effect on the set of retained and lost translations.

It is clear from this analysis that the shortest non-
coplanar retained translations are:

a1 ÿ 2a2 � a3; a1 � a2 ÿ 2a3; a1 � a2 � a3:

These three translations form the unit cell of the new
phase. Let us denote them by aH

1 , aH
2 and aH

3 , respec-
tively. Taking into account all atomic contraction related
displacements, we can rewrite the exact components of
the translations in the cubic coordinate system:

aH
1 � �a� kk ÿ 3k? ÿ 2kz; ÿ2aÿ 2kk � 6k? � 4kz;

a� kk ÿ 3k? ÿ 2kz�;
aH

2 � �a� kk ÿ 3k? ÿ 2kz; a� kk ÿ 3k? ÿ 2kz;

ÿ 2aÿ 2kk � 6k? � 4kz�;
aH

3 � �a� 4kk ÿ 2kz; a� 4kk ÿ 2kz; a� 4kk ÿ 2kz�;
�6�

where a is the cubic lattice parameter of the parent B2
phase. It is easy to see that �aH

1 ; aH
3 � � �aH

2 ; aH
3 � � 0 so

that the corresponding angles are equal to 90�. In
addition, cos�aH

1 ; aH
2 � � ÿ1=2, so that the angle between

aH
1 and aH

2 is 120�. Thus, these three translations form a
hexagonal unit cell. The edges of the hexagonal cell are
aH � a� 61=2 and cH � a� 31=2. The exact expressions
are

aH � �a� kk ÿ 3k? ÿ 2kz�61=2;

cH � �a� 4kk ÿ 2kz�31=2:
�7�

The orientation relationships between the new hexag-
onal cell and the parent cubic structure are

�001�Hjj�111�B2; �100�Hjj�1�21�B2;

�010�Hjj�11�2�B2; �110�Hjj�2�1�1�B2:
�8�

The volume of the hexagonal unit cell (taking the
contractions into account) is 27a3, i.e. the hexagonal cell
contains 27 atoms of each type. The smallest cell (this is
1=3 of the hexagonal prism) contains 9 atoms of each
type. Let us rewrite their exact coordinates (calculated
by taking into account the displacements �, k||, kz, k?
and p) in the hexagonal coordinate system, expressed as
fractions of aH and cH. Without loss of generality, we
may assign the coordinates listed below to Ni atoms. The
coordinates of the Ti atoms can be obtained from the
coordinates of the Ni atoms by addition of the vector
(0; 0; 1=2).

1: 0; 0; 0

2: 1=3ÿ uÿ v; 0; 2=3� 4�

3: 0; 1=3ÿ uÿ v; 2=3� 4�

4: 2=3� u� v; 2=3� u� v; 2=3� 4�

5: 2=3ÿ u� v; 0; 1=3� 4�

6: 0; 2=3ÿ u� v; 1=3� 4�

7: 1=3� uÿ v; 1=3� uÿ v; 1=3� 4�

8: 2=3; 1=3; 6�

9: 1=3; 2=3; 6�:

�9�

The shifts u, v and � are related to the displacements �,
p, k||, k? and kz by

u � �=3�a� kk ÿ 3k? ÿ 2kz� � �21=2=aH31=2;

v � p=�a� kk ÿ 3k? ÿ 2kz� � p61=2=aH;

� � �=3�a� 4kk ÿ 2kz� � �=cH31=2

�10�

and are quantities of the order of �=a and p=a.
Fig. 3 depicts the structure of the unit cell. For

convenience of perception, atoms are placed in their
initial cubic positions. Atomic displacements from these
positions are marked by the needles. Different types of

Fig. 3. The unit cell of the R phase of TiNi.

Fig. 2. (a) Intraobject contraction within (110) planes of the B2
structure in TiNi; (b) interobject contraction between planes; (c)
static displacements, 2�, and additional displacements, p, of (110)-
type planes in the con®guration with q = 1/3.



LEKSTON, NAISH, NOVOSELOVA AND SAGARADZE 807

needles on the xy plane correspond to different values of
the displacements (ÿ* means u� v and ÿ� means
u ÿ v). Along the z axis, the atoms of the bottom and
central layers have displacements 6�, but atoms of the
other layers have displacements 4�. Ni and Ti atoms are
denoted by open and solid circles, respectively.

Fig. 4(a) illustrates the (001)H layers of the whole
hexagonal prism that has three times the volume of the
unit cell with all atomic displacements in the xy plane.
The notation is the same as in Fig. 3. Fig. 4(a) clearly
shows the existing symmetry elements: threefold
symmetry axis and three mirror planes m containing the
translations aH

1 and aH
2 . There is no inversion center in

this structure. Thus, the space group of the new phase is
C2

3v � P31m.
As was mentioned previously, Goo & Sinclair (1985)

indicated that the space group for the R phase was
P31m, but they did not show a unit cell or give any
atomic coordinates. Hara et al. (1995) obtained the
atomic coordinates of Ni and Ti in the R phase, and
Ohba et al. (1992), who belong to the same scienti®c
group, obtained the coordinates of Au and Cd in the �02
phase, which is similar to the R phase. In both cases, they
indicated that the space group for the martensite
structure is P311, and atoms of both types occupy all
possible equivalent positions in this space group: 1(a),
1(b), 1(c) and 3(d). Fig. 1 of the unit cell from the work
of Ohba et al. (1992) should be compared with our Fig. 3
because, ®rst, the volume of the unit cell is one third of
that of ours, as shown in Fig. 3 (in their structure,
[100]H ||[21Å1Å ]B2 and [010]H ||[1Å21Å ]B2) and, second, they
have not represented all atomic displacements obtained
from ®tting the theoretical intensity pro®le to the
experimental one. To assist comparison, we have
reproduced in Fig. 4(b) the (001)H layers of the whole
hexagonal prism with the atomic displacements
obtained from data of Hara et al. (1995) and of Ohba et
al. (1992) for the R and �02 phases. The distinction
between the R and �02 phases lies only in the lengths of
the needles.

Our R-phase model agrees with the models of Hara et
al. (1995) and Ohba et al. (1992) in size and the orien-
tation of the parent structure with respect to the hex-
agonal unit cell but our model has a different space
group and different atomic coordinates. Our main result
consists in obtaining the R phase by an independent
theoretical analysis based on the concept of cooperative
thermal vibrations, without experimental data.

The values of the lattice parameters, aH and cH, and
shifts �, u and v can be calculated from the equations of
new contacts between the atoms. From these calcula-
tions, we obtain parameters as follows:

aH � 7:461 AÊ ; cH � 5:221 AÊ ;

� � 0:055; u � 0:039; v � 0:017: �11�

Before discussing the experimental data, it is neces-
sary to make two important comments. First, the space
group of the R phase is trigonal, with a primitive hex-
agonal Bravais lattice. From this standpoint, the `H
phase' would be a more appropriate label than the
commonly accepted `R phase', and it seems inap-
propriate to speak about a rhombohedral angle as a
characteristic of the R phase. It is impossible to intro-
duce such an angle into a primitve lattice. Nevertheless,
some authors keep using this label. Second, it is inter-
esting to note that none of the published works discusses
the physical meaning of the intermediate nature of the R
phase. It follows from our theoretical result that this
phase cannot be the ground state of titanium nickelide

Fig. 4. (001)H layers of a hexagonal prism containing three unit cells of
(a) our R-phase model of TiNi and (b) the R-phase models of Hara
et al. (1995) and of Ohba et al. (1992).
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at low temperatures. This question might be resolved by
further investigation.

5. Experimental data

Most of the published structural data on the R phase
have been obtained by electron diffraction. Only a few
X-ray and neutron diffraction studies are known, and
these data are not suf®cient for quantitative comparison
with theory. Therefore, we obtained our own X-ray
diffraction pattern of the alloy Ti50Ni48.7Co1.3 containing
the R phase at room temperature.

An alloy with this nominal composition was obtained
by induction melting. The ingot was homogenized under
a vacuum (about 1.3 � 10ÿ3 Pa) at 1170 K for 48 h and
hot rolled to plates of thickness about 1 mm. The
specimens for X-ray experiments after hot rolling were
isothermally annealed at 970 K for 1 h in a resistance
furnace with an argon atmosphere, then immersed in
ethanol, which was cooled by dry ice to a temperature of
about 210 K, and ®nally aged at 570 to 870 K for 1 to 9 h
(Lekston, 1993).

The X-ray diffraction pattern was obtained at room
temperature using a Philips X-ray diffractometer
equipped with a graphite monochromator. Cu K�
radiation was used. The diffraction pattern was recorded
in the angular region from 20 to 127�(2�) by continuous
scan of the detectors with a speed of 2�(2�) minÿ1.²

We produced two X-ray diffraction patterns from this
alloy. The ®rst one had a strongly pronounced R phase at

room temperature, with clear splitting of the parent B2
re¯ections and the appearance of new R-phase re¯ec-
tions. The other one was obtained from the same
specimen, but after several months, so this alloy had
been additionally aged at room temperature. As a result,
the R phase is feebly marked on the diffraction pattern
from it. For example, it is rather dif®cult to distinguish
(112)R and (300)R re¯ections and some of the weak
R-phase re¯ections are not visible on this pattern.
Unfortunately, we have only compared these data with
our model using Rietveld re®nement (DBWS-9411)
because only they have been in an appropriate form.
The result is illustrated in Fig. 5. The agreement is
satisfactory (RBragg � 5:86%; Rp � 9:11%); values of
adjustable parameters are

aH � 7:406 �3�AÊ ; cH � 5:268 �4�AÊ ;
� � 7:29 �2� � 10ÿ3; u � 3:64 �1� � 10ÿ3;

v � 1:25 �2� � 10ÿ4: �12�

6. Comparison with the literature

We have compared our R-phase model with diffraction
data reported in the literature. The diffraction peaks of
the R phase can be classi®ed into three categories. The
®rst set includes the peaks that also appear in the
diffraction patterns of the parent B2 phase. The second
set consists of re¯ections that also appear in the parent
phase, but are split into two or even three components
after the transition to the R phase. The third set includes
the re¯ections that appear only in the R phase. These
re¯ections can be called superstructure re¯ections.

Fig. 5. Plot of observed and calculated intensities from a Rietveld re®nement of X-ray powder data from the alloy Ti50Ni48.7Co1.3 at room
temperature.

² The numbered intensity of each point on the pro®le has been
deposited with the IUCr. These data are available from the IUCr
electronic archives (Reference: AU0153). Services for accessing these
data are described at the back of the journal.
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One of the main diffraction effects that indicates the
transition to the R phase is the appearance of super-
structure re¯ections at the so-called type-1/3 positions
along the [110]B2, [112]B2 and [111]B2 directions of the
initial diffraction pattern. At temperatures far above the
point of the martensitic transformation, these super-
structure re¯ections are observed as broad diffuse
maxima. Their appearance is usually interpreted as one
of the pretransition phenomena. Diffraction effects of
this type were described in our recent work (Naish et al.,
1996) and have been observed in many other studies
(see e.g. Khachin et al., 1992). As the temperature is
lowered, the widths of the diffuse maxima decrease and
at the transition point they become comparable with
instrumental resolution. On further cooling, the inten-
sities of these maxima increase by two or three orders of
magnitude, although they remain very weak compared
to the re¯ections of the ®rst and second type inherited
from the B2 phase. Using the proposed geometrical
model of the B2! R martensitic transformation, it is
easy to show that the (100)R re¯ection corresponds to
(1/3, ÿ1/3, 0)B2, (110)R to (2/3, ÿ1/3, ÿ1/3)B2, and
(001)R to (1/3, 1/3, 1/3)B2. Thus, the proposed model
adequately describes the main diffraction phenomena.

Shapiro (1981) studied polycrystalline samples of
Ti50Ni47Fe3 at three temperatures: 300, 225 and 120 K.
The last temperature falls into the existence region of
the R phase. The neutron wavelength was � � 2:466 AÊ .
Three segments of the neutron diffraction patterns
presented by Shapiro (1981) are 2� � 46±50�, 68±73�

and 88±92�. In these regions, there are six re¯ections of
the R phase: the (111)R re¯ection, a re¯ection of the ®rst
type corresponding to the (100)B2 re¯ection; (112Å)R and
(300)R re¯ections, re¯ections of the second type that
result from splitting of the (110)B2 re¯ection; the (003)R

and (221Å)R re¯ections, also re¯ections of the second type
that appear by splitting of the (111)B2 re¯ection; and a
weak (211)R re¯ection of the third type. The agreement
between the calculated and experimental peak positions
and intensities is illustrated in Table 1. The re®ned
structural parameters (Shapiro, 1981) differ slightly
from (11) because the sample has a different type of
dopant from our sample:

aH � 7:319 �2�AÊ ; cH � 5:277 �3�AÊ ;
� � 0:013 �3�; u � 0:013 �1�; v � 0:038 �2�: �13�

Table 1 shows that the proposed structural model of the
R phase agrees well with the experimental data
(Shapiro, 1981). The only exception is the intensity of
the (300)R re¯ection. Note however that (300)R and the
(112Å)R re¯ections are the components of the doublet
that originates from the (110)B2 re¯ection; the intensity
of the parent re¯ection should be equally shared
between the two split components. This conclusion
follows not only from our theoretical analysis but also
from the X-ray diffraction data (Khachin et al., 1992).

Thus, we conclude that a signi®cant difference in the
measured intensities of the (112Å)R and (300)R re¯ections
found by Shapiro (1981) may be caused by the presence
of preferred orientation or some similar effects and is
not related to the crystal structure of the R phase.

Finally, it is necessary to discuss the experimental data
presented by Hara et al. (1995). They present an X-ray
diffraction pattern of the R phase for a Ti±50.23 at.% Ni
alloy, but they present none of the numerical informa-
tion that would be necessary for a detailed comparison
of the calculated and measured intensity pro®les.
However, qualitative comparison of the experimental
peak positions and re¯ection intensities given by Hara et
al. (1995) and re¯ections from our data shows that the
agreement of our theoretical model and their experi-
mental data is quite satisfactory. For example, they
consider the intensity of the 202 re¯ection, which agrees
with experimental data only for space group P311 in
their calculations to be one of the arguments in favor of
space group P311 for the R phase. But the theoretical
intensity of this re¯ection for our structural model is
quite adequate to explain the experimental intensity.
However, we base our model not on one re¯ection but
on an independent theoretical analysis and comparison
of our calculated results with the experimental data.
That allows us to be sure of the reliability of our results.
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